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Today’s Topic

OpenPsi @ I111S

* Basic models for sequence data

e Recurrent neural networks
e LSTM

* Basic techniques for modeling natural’ language

4/4 Copyright @ 111S, Tsinghua University
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Story So Far

 Supervised Learning (Lec. 2~3)
e Discriminative Models
* Network architectures and learning algorithms

e Generative Models (Lec. 4~7)
* Energy-based models (contrastive divergence + MCMC)
* VAE (variational inference)
GAN (neural loss function)
Flow model (bijections)
Diffusion model (denoising score matching)
Trade-offs between expressiveness, inference and training
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Sequence Data

* Most existing discussions assume fixed dimensions

* E.g.: Image classification and generation
* Input image has fixed width and height
* Fixed output dimension

* Fixed amount of network layers and parameters
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* What if the dimension of input varies a lot?
* Finding the “welcome” (lecture 2)

4/4 Copyright @ 111S, Tsinghua Unive
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Lecture 8, Deep Learning, 2025 Spring

Sequence Data

* Most existing discussions assume fixed dimensions

* E.g.: Image classification and generation
* Input image has fixed width and height

* Fixed output dimension
* Fixed amount of network layers and parameters

* What if the dimension of input varies a lot?
* Finding the “welcome” (lecture 2)

* Generating poet
e Machine translation
RMEE  =E  hw &E 4 S R == = v
Deep learning is a popular area in Al X REZFIZEARRIWE. w
Shéndl xuéxi shi Al de rémén lingyt
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Sequence Data

* Most existing discussions assume fixed dimensions

* E.g.: Image classification and generation
* |Input image has fixed width and height

We need a generative.modelfor any data dimension!

* Generating poet
 Machine translation
RMEE =  hx  &E 4 S R == = o
Deep learning is a popular area in Al ® x REZFIZARAIGE, w
Shéndl xuéxi shi Al de rémén lingyi.
Copyright @ 111S, Tsinghua University
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Autoregressive Model

OpenPsi @ I111S

* Goal: a tractable p(x) for x of any dimension L
* In particular, we consider sequential data'x = [x3,%>, ..., x|, L may change

e Autoregressive modeling

p(x) = 1_[ P(X; X1 - Xi1)
1<i<L
* Key idea: decompose a joint sequence into ordered conditionals
* Use previous dimensions to “predict” the next dimension
* Example: Gaussian auto-regressive models
p(xilxg axizg) ~ N(ug(xy oo Xi-1), Ug(xl e Xi—1))

4/4 Copyright @ 111S, Tsinghua University 8
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Autoregressive Model

OpenPsi @ I111S

* Goal: a tractable p(x) for x of any dimension L
* In particular, we consider sequential data'x = [x3,%>, ..., x|, L may change

e Autoregressive modeling

p(x) = 1_[ p(xX;[x1 .o xi—1)
1<i<L
* Key idea: decompose a joint sequence into ordered conditionals
* Use previous dimensions to “predict” the next dimension
* Example: Gaussian auto-regressive models
p(xilxg caxing) ~ N(ug(xq o xi-1), 05(9% Xi—1))
How to desigri"thesé tiwo tidtworks??? ’
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Temporal Convolution

* WaveNet (Deepl\/lind, 2016) W
* Goal: voice synthesis
* p(x) = [1l;p(xilxq, e Xi-1)
* |dea: temporal convolution 1 Second

* Q: how many layers do you need?

* A: Kernel size d, we need L /d"layers
/day p(xi|x<;)
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Temporal Convolution

* WaveNet (DeepMind, 2016)

OpenPsi @ I111S

* Goal: voice synthesis W

* p(x) = ILip(xilxq, s x3-1)
* |dea: temporal convolution
* Dilated Convolution!
* O(logL) layers will be sufficient

2.9.92.90.92.9..9 002, 0%
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p(xi|x<;)

Output

i.:'-'-%:..: Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer

. Dilation = 2

Hidden Layer
Dilation = 1

Input

1 Second

Computation Cost
* Generation
* Sequential: O(L)
* Likelihood:
 fully parallel (CNN)

11
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Temporal Convolution

(%U 1x1 }—@—4 1x 1H Softmax }—b Output

Skip-connections

* WaveNet (DeepMind, 2016)

* p(x) =i p(xilxq, ooes xi21)
* Dilated Temporal Convolution

 And more
* Quantization o
e Residual connection oupt Q" ® ® ®© ®© ®© O © O OO0 OO OO
e Conditioned generation
+ p(x|h) \Layer
 Remark
Hidden

* First deep generative model that  Layer

can generate raw signals
Hidden

(also check newer ones Jukebox & Suno) Layer
https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

https://opétrai.com/blog/jukebox/ Copyright @ 111S, Tsinghua University 12
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Autoregressive Model for Images

* PixelCNN (DeepMind, ICML 2016)
* Autoregressive model over images
+ p(x) = IIP" p(xilxa, o Xior)
* CNN?
* How to design the convolution filter?
* Goal: the convolution filter only takes.in.previous values

Context

4/4 Copyright @ 111S, Tsinghua University 13
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Autoregressive Model for Images

* PixelCNN (DeepMind, ICML 2016)

* Autoregressive model over images
_ 11D?
° p(X) — Hi p(xille '"in—l)
 Masked Convolution
* Each pixel only takes in previous values

OO0 OO0 0O
ONONORCHO
ONON FONO
O O O

o, 0 ©
ON X O
O® ® OO

* Likelihood evaluation is in perfect parallel o 0 0 0 o

* |ssues?
* Receptive fields have blind spots!
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Context

R G B

Mask B
R G B

Mask A
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Autoregressive Model for Images

_ . OO O-0"0
* PixelCNN (DeepMind, ICML 2016) O0@0O0
* Autoregressive model over images OOOO < OOO
_ [IN? '
* p(x) =11 pCxilxg, oy xi21) i
« Masked Convolution ojoeYe)e
* Each pixel only takes i i | © @ O
achn pixel only takes In previous values O ‘ OO T

* Likelihood evaluation is in perfect parallel o 0 0 0 o
* Gated PixelCNN (DeepMind, NIPS-2016)

 Corrected receptive field (homework ©)
* Gated convolution

* “Gating” technique

* Inspired by LSTM <+

* More details later

Vertical stack T

1x1
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OpenPsi @ I111S

Autoregressive I\/Iodel for Images

* Conditioned generation

Gated PixelCNN

4/4
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Sequence Data (Recap)

* Finding or synthesizing the “Welcome” voice
* Input data x = [x; ...x; ], L may vary
* Autoregressive modeling: p(x) = [1; p(x;|x1-%xi_1)

* Improved Temporal Convolution: Dilated-ConvNet (WaveNet)

* Parameter size is fixed, but need O (log L) layers to cover the entire sequence
* This is a network of varying/unbounded‘depth for arbitrarily long sequences

—y Output
E’.i—-tt.-i Dilation = 8

T ) Hidden Layer
L -~ I- Dilation=4

Hidden Layer
. Dilation = 2

Hidden Layer
Dilation = 1

Input
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State-Space Model

* Finding the “Welcome”

* Input sequence data X; ... X;, L may vary (X; can\be a general vector)
* Whether the voice contains “Welcome”

* Goal: a fixed-size model for arbitrarily long sequences
 State-Space Model

* h;: (hidden) state Ym* * E * * * *
* X;:input 2
] > > >
| 2 Ii T f i { 1

* Y;: output 5
* Yo, he = f(he—10 X5 0) *)
* h_q:initial state =2

Time

« Key idea: compressiany prefix seguemce-sg-sinx; | into a fixed dimension vector k;
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Recurrent Neural Network
* h;: (hidden) state

* State-Space Model Y(t
h

* X;:input; Y;: output ] * -'* ? * * *
1. I 1

* hy = f1(he—1, X5 0) X(t) il ! !

* Vi = f2(h; 6) t=_o o
* h_q:initial state Time

~H-il-

 Same neural network across-all the columns!
e Simplified drawing (loops implies recurrence)
* h;:avector that. summarizes all past inputs (also called “memory”) ~
* h_, affects the whole network (typically set to zero) k_r_,/
* Y; is computed over X, ..., X;
v o X, affect all the outputs and states after " .
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Recurrent Neural Network

 State-Space Model Y(t
* h;: (hidden) state ] * ? * *

OpenPsi @ I111S

* X;:input; Y;: output B
* hy = f1(he—1, X5 0) X(t) i il
* Yy = f2(h; 6) b0

* h_q:initial state

e Same neural network across all the columns!

* MLP v.s. RNN
* RNN can be viewed as repeatedly applying MLPs

« hy = fl(W(l) X, +w D . p L+ b(l))
A fZ(W(Z)ht n b(Z))
” * fi, f> are activations (e.g., Sigmaid; tanb.RelLL.Softmax)

Time

20
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Recurrent Neural Network

 State-Space Model Y
* h;: (hidden) state ) * ?
* X;:input; Y;: output .1_. >
* hy = fi(he—1, Xt 0) X(t) i il
* Yy = f2(h; 6) b0

OpenPsi @ I111S

L4

:

* h_q:initial state

e Same neural network across all the columns!

4/4

* MLP v.s. RNN
* RNN can be viewed as repeatedly applying MLPs

* h = fl(W(l) X, + w (D) . he i+ b(l))
c Y, =Ff, (W(Z)ht 1 b(Z)) Recurrent weights!
* f1, f> are activations (e.g., Sigmaid; tanhRellSoftmax)

Time

21
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Recurrent Neural Network

 Stack K layers of RNNs! Ym* g * * * *

* Multi-layer RNN o ’ s : L L :
 State-Space Model B . . .
(0 P S S i 1 i i
* h;’: (hidden) states X(ON
t=0

* X;:input; Y;: output

Time k
(1) _ (@) (4 (1) :
« hD = £V (P, X, 0) *

(k) _ (k) (p(R) . (k=1),
*hy” =4 (ht—l'ht '9)

- Y, = f,(h{; )

. h(_kl): initial states

(o (g
T\

4/4 Copyright @ 111S, Tsinghua University 22
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Recurrent Neural Network

OpenPsi @ I111S

 State-Space Model Y
* h;: (hidden) state ) * ? * * *
* X;:input; Y;: output .1_. > . .
* hy = fi(he—1, Xt 0) X(t) i il ! !
* Yy = f2(h; 6) b0
* h_q:initial state Time

e How to train an RNN?

« Assume we have paired input-and target sequence {(X;, D;)};

e Remark
* RNN can‘handle much more flexible data format than fully paired data
e But let’s simply keep-this assumption for now

4/4 Copyright @ 111S, Tsinghua University
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Recurrent Neural Network

 State-Space Model « D(L.T)
* h;: (hidden) state vo) ~¥) v Y(T—-2) Y(T-1) YT
* X;:input; Y;: output * *
* hy = f1(he—1, X5 0) hy cene
* Yy = f2(he; 0) 4 A ! % A
* h_q:initial state X0 X1 x@ XT-2) XT-1 X(T)

* How to train an RNN?
« Assume we have paired input-and target sequence {(X;, D;)};
* We can define theJoss function L(8) = }.; Div(Y;, D;)

* Goal: learn the best parameter 8™ via gradient descent
* Backpropagation.through time (BPTT)!
a/4 * Forward pass fromt =0 - !dwrt.%ﬁ%lﬂu‘{!%%%%%r ity L-0 24
* Pay attention to gradient accumulation for recurrent weights!
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Extension

* In a standard RNN, Y; only captures previous inputs

4/4

* What if we want Y; to handle the entire.inputs?

* Bidirectional RNN
 An RNN for forward dependencies

e t=0..T

 An RNN for backward dependencies

e t=T..0
+ Y, = f, (hl,h;6)

e BPTT for bidirectional RNN?

 dDiv/dY,; forall t
* t=T..0forhs
*t=0..Tforh,

OpenPsi @ I111S

EERER:

Time

Y(T-2) Y(T-1) Y(T

"= = »

ﬁ/ﬁ/ﬁ

X(TZ) \ X1\ X(T)

Copyright @ 111S, Tsinghua-Univers
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Extension

* Finding the “Welcome”
* Input data X; ... X}, L may vary
* Whether the voice contains “Welcome”

* RNN for sequence classification

e Y = mtath

* L(0) = cross_entropy (Y, Yiesiréd)

Ydesired(t)

Y(t)

é 1

4/4 t=0 Copyright @ 111S, Tsinghua Univel

Time

OpenPsi @ I111S

A 1-layer RNN can handle arbitrarily
long sequence data
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Extension

* Finding the “Welcome”

* Input data X, ... X}, L may vary A 1-layer RNN can handle arbitrarily
* Whether the voice contains “Welcome” |<>"g.ses|huenceI data
...... in theory!

* RNN for sequence classification

Y = mtath

* L(8) = cross_entropy (Y, Yqesired)

Ydesired(t)

Y(t)

é 1

4/4 t=0 Copyright @ 111S, Tsinghua Univel
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Practice Issues of RNN

* We start with a linear RNN
ez =Wy -hi_qy + W, - X;
* hy =z
* All activations are identity functions
* We will add activations back later

.M RSB W
=2EE

X(t)

-

t=0

4/4 Convieight 2 LLLIS __Tsinghua Liniversity . 28
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Practice Issues of RNN

OpenPsi @ I111S

: : (¥
* We start with a linear RNN N * é * * * *
.Zt=Wh°ht—1+Wx'Xt . ’ " ” " ” ” "
N 4 1
o h’t — Zt X(t) . ﬁ ﬁ ’—L‘ FL
) . t=0 _
* Let’s expand the recursions Time
* hy = Wy - hg—q + Wy - Xi,
o = Wihg_p + WyWy - X oq + Wer X,
© = Wiheos + Wy Wy Ky + Wy Wy - Xieey + Wy - X

o =WFKIh_ + TR WETW, - X,

4/4 Copyright @ 111S, Tsinghua University
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Practice Issues of RNN

. . (¥
* We start with a linear RNN N * é * * * *
.Zt=Wh'ht_1+Wx'Xt . > g > > > > >
N ‘4 1
o h’t — Zt X(t) . ﬁ ﬁ ’—L‘ FL
, . t=0
* Let’s expand the recursions Time
* hy = Wy - hg—q + Wy - Xi,
o = Wihg_p + WyWy - X oq + Wer X,
© = Wiheos + Wy Wy Ky F WaWy - Xieey + Wy - X
«  =WEh_ + YR WETWL - X

* The coefficient of signal at position i is exponential over W,
* The dynamics of the'system is highly depending on the maximum eigenvalue of W),

4/4 Copyright @ 111S, Tsinghua University
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Practice Issues of RNN

OpenPsi @ I111S

. . (t)
* We start with a linear RNN N Y * é * * * *
.Zt=Wh'ht_1+Wx'Xt . > g > > > > >
N ‘4 1
o h’t — Zt X(t) . ﬁ ﬁ ’—L‘ FL
, . t=0
* Let’s expand the recursions Time

* by = Wi hoy + T o Wi W - X,
* The coefficient of signal at position.i.is exponential over W,
o If |Ahax| > 1, the system'‘explodes

o If |Ahax| < 1, the system cannot capture long-term dependencies
* If |Ahax| = 1, the'second largest eigenvalue matters

4/4 Copyright @ 111S, Tsinghua University
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Practice Issues of RNN

. . . (t)
* RNN with non-linearity N Y * * * * * *
.Zt=Wh'ht_1+Wx'Xt . g > > > > > >
£ 1t
 he = £(z¢) Wil (% B B B R
* Simulation results with activations® — Time

e Auniformstart h_; = [1,1,1,1;...]//N.

* We simulate |WX*1h_, | with various.eigenvalues in W),

e Remark: & 1.2
* Tanh is preferred b _ |
* ... but still saturates 125 oo |
* What about backward pass? = S ol e
4/4 Copyright @1Iﬂs, Tsinghua UrTi:@rsity 20 S o 10 20 o 1032 20

sigmoid tanh relu
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Practice Issues of RNN

* RNN with non-linearity
* zg =Wy -he g + Wy X,

* he = f(2¢)

* BPTT for RNN
* Consider J,(6) = Div(Yy, Dy)

o 9k _ 9k
dhy  Ohy

Loh_,

Y(t)

OpenPsi @ I111S

X(t)

g 2

OB
-l

-
-
—~ =T

° < [Ie Wi f'(Z¢) = Wf{( [l f(Z)

4/4

Copyright @ 111S, Tsinqhuafﬂfﬂ\{eﬁitv

Time

he = f(W, - Xe + Wy - he_q + b)

h(2)

IR Oh(®)

ohM ” oh@ ~
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Practice Issues of RNN

OpenPsi @ I111S

@i

-
B
B
B
-~ -l

* RNN with non-linearity N "
.Zt=Wh.ht—1+Wx.Xt . =“|
* hy = f(2¢) X(t)

 BPTT for RNN =

* Consider J,(6) = Div(Yy, Dy)
, 9k _ 0Jk dh¢

ht=

Time

f(W, - Xe + Wy - he_q +b)

h(2) h®) h4)

W m w m w &

dhg Ohg L ohe_q
_ Yk

o[ Waf'(Z) = Wi T f' 2,
e Possible gradient explosion! D

°

@
0

4/4 Copyright @ I11S, TsinqhuanWitv
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Practice Issues of RNN 1- =
— derivative
. . . Y(
* RNN with non-linearity i A I N T
.Zt=Wh.ht—1+Wx.Xt ._
* he = f(2) X1 >
* BPTT for RNN
* Consider J,,(8) = Div(Yy, Dy) o
o ke — Oy Ohe hy = fF(W, - X, + Wy, -hey + b '
5h0 ahk taht—l t_f( x t+ h’ t—1+ )
_ k
o o[ Waf'(Z) = WETTefAZ)
e f is activation (e.g:, tanh
f (e.g ) o [ﬂ w W f:
*fl =1 ® U e
. @, o) o) 0
e Gradient vanishing!
* RNN “forgets” long-term past! oJW Oh(2) ah3) ohw  9J@
4/4 Copyright @ 111S, TsinqhuaWity f.)fl-:-l-: b (')hf.l’:‘ > ('")h"::;.‘ pr m%
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Practice Issues of RNN

OpenPsi @ I111S

25

—~

. . . (t)
* RNN with non-linearity h Y *
'Zt=Wh'ht—1+Wx'Xt L ; =L
* hy = f(2¢) Q&
t=0

B B B

* Gradient Explosion & Vanishing!
* Training instability and long-term dependency

* Tricks for explosion
* Gradient clipping

* Take a smaller step when gradient is too large
e Gradient clipping.s an important trick in practice

Copyright @ 111S, Tsinghua University

4/4

Time
With clipping

Without clipping

J(w,b)

Algorithm 1 Pseudo-code for norm clipping
T
if ||g|| > threshold then

~ threshold 2
— LAresnold
8 gl 8 36

end if




Lecture 8, Deep Learning, 2025 Spring

Practice Issues of RNN

OpenPsi @ I111S

. . . (t)
* RNN with non-linearity " Y * f
* Zg = Wp - heq + Wi X B |
NN ‘4
* hy = f(2¢) . ) ﬁ

t=0

L
'

.
'

L
:

—~

* Gradient Explosion & Vanishing!
* Training instability and long-term dependency
* Tricks for explosion
* Gradient clipping

* |ldentity initialization
* Make sure the'weight matrix is initialized to have A5 = 1

4/4 Copyright @ 111S, Tsinghua University
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Practice Issues of RNN

* RNN with non-linearity

* Gradient Explosion & Vanishing!

OpenPsi @ I111S

.Zt=Wh.ht—1+Wx.Xt . =“|
* hy = f(z) X0

t=0

Y(t)
h 4

* Training instability and long-term dependency

* Tricks for explosion

4/4

* Gradient clipping
* |dentity initialization
* Truncated Backprop Through Time

* Only backpropagate foria few timesteps ffff

Time

—~ =T

I N
L N T T ) R 2 N T 2N N T T N I
LLl I+I+I+I+ +I+I»I+I+I+I+I+

Copyright @ 111S, Tsinghua University
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Practice Issues of RNN

* RNN with non-linearity

* Gradient Explosion & Vanishing!

OpenPsi @ I111S

* z =Wy -heg + W, - X = \
* hy = f(z) X(t) 4

t=0

Y(t)
h4
4

’
-

.
'

-l

-

—~ =T

* Training instability and long-term dependency

* Tricks for explosion

4/4

* Gradient clipping
* |dentity initialization
* Truncated Backprop Through Time

* Only backpropagate foria few timesteps ffff

e Gradient explosioniis easy to solve

tt 1t

]
-]

Time

Copyright @ 111S, Tsinghua University
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Practice Issues of RNN

* RNN with non-linearity

* Gradient Explosion & Vanishing!

.Zt=Wh'ht_1+Wx‘Xt
* hy = f(z)

Y(t)

h,

OpenPsi @ I111S

X(t)

t=0

»

’
-

.
'

-l

-

* Training instability and long-term dependency

* Tricks for explosion

* Gradient clipping
* |ldentity initialization
* Truncated Backprop Through

 What about memory?

4/4

* RNN forgets past due to activation

) T T
Time

t 1

N
1
1

Time

—~ =T

opyright @ 111S, Tsinghua University
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Preserve Long-Term Memory

* RNN with non-linearity
* zg =Wy -he g + Wy X,
* hy = f(2)

® ®
TA A

B0
r s

OpenPsi @ I111S

Y(t)
hy

X(t)
t=0

-
" u B u

—~ =T

Memory ¢,

®
AT

Time

* It is difficult for RNN to preserve long-term memory
* The hidden state h; is constantly being written (short-term memory)
* Let’s keep a separate cellfor maintaining long-term memory

ESpcsl

&) O &)

Copyright @ 111S, Tsinghua University l
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Long Short-Term Memory Network

e LSTM (Hochreiter & Schmidhuber, 1997)

* A special RNN architecture for learning long-term dependencies
* o: layer with sigmoid activation

* Let’s walk through the architecture
* Diagrams from https://colah.github.iofp0dstsf2015-08-Understanding-LSTMs/

® ©
t R} t
X O, X >
ANV A )
g,
I |
&) ® &)
] o — > <
4/4 Neural Network Pointwi égpy qhtV@qtgrs Tsinghya AN ESHLY Copy

Layer Operation  Transfer

OpenPsi @ I111S
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Long Short-Term Memory Network

e LSTM (Hochreiter & Schmidhuber, 1997)

* Core idea: maintain separate state h; and cell ¢; (memory)
* h;: full update every iteration

* ¢;: only partially updated through gates
* Ao layer outputs “importance”. (0~1) for each entry and only modify those entries in ¢;

® ® ©
t » t o ; C _®_
1 \ 4
g 9)
| I
© © 1
4/4 :| _<opvriqht @ 1118, Tsinghua University 43
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Long Short-Term Memory Network

e LSTM (Hochreiter & Schmidhuber, 1997)

* Forget gate f;
* f; outputs whether we want to “forget”things from c; or carry it
* Compute ¢;_1 © f; (element-wise)

* f:(i) — 0: we want to forget c; (i)
* f:(i) = 1: we want to keep the information in c; (i)

fe =0 Wy |hi—1,2¢] + by)

O ) >_> _< Copyrighjt @ 111S, Tsinghua University 44
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Long Short-Term Memory Network

e LSTM (Hochreiter & Schmidhuber, 1997)
* Input gate i;
* [; extracts useful information from X; to update memory

* C;: information from X; to update memory (dimension projection)

* [;: which dimensions in the memory should be updated by X;
* i;(j) = 1: we want to keep-the information in ¢;(j) to update memory
* i;(j) = 0: ¢:(j) should not contribute'to memory

) o) ®

T
5 it

é Cy = tanh(We - [he—1, ] + be)

hi—y

f &
O S —< Copvrxiqhi @ 111S, Tsinghua University 45
t
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Long Short-Term Memory Network

e LSTM (Hochreiter & Schmidhuber, 1997)

* Memory update
=[O 1+ O
 f; forget gate; i; input gate
* fi O c¢_q : drop useless information-in old-memory
* i; O C;: add selected new infermation from current input

@) () »
t t t b c,
N . |\: =1 @ @ >
a OEALeR L f
(D) *

o —» _< Copyright @ 111S, Tsinghua University

Neural Network Pointwise Vector
Layer Operation Tramsfer ~ Concatenate Copy

OpenPsi @ I111S
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Long Short-Term Memory Network

e LSTM (Hochreiter & Schmidhuber, 1997)

* Qutput gate o,

« Compute next hidden state h; = o; © tanh(c;)
 tanh(c;): non-linear transformation-over all past information
* 0;: choose important dimensions for next state

* 0:(j) = 1:tanh(cs(j)) is critical for next state
* 0:(j) = 0: tanh(c;(j)) does not worth.reporting

he A
) o) ®

1
L N b,
{ 2 %Eg—»{ A J: o ? oy =0 (Ws [hi—1,2¢] + Do)
®

| hy = o4 x tanh (C})
&)

O — > —< Copquht @ 111S, Tsinghua University 47
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Long Short-Term Memory Network

* LSTM (Hochreiter & Schmidhuber, 1997) ® ®
o ht = O¢ @ tanh(Ct) ]

T
A [TAL 4
®

>
* Uninterrupted gradient flow! | |
* No more matrix multiplication for c; &) &)
* In practice: ~100 timesteps of memory.instead of ~7

* Remark
* LSTM does not have guarantees for gradient explosion/vanishing
* An architecture that makes learning long-term dependency easier
e LSTMs is the.dominant approach for sequence modeling from 2013~2016

4/4 Copyright @ 111S, Tsinghua University 48
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LSTM Variants

OpenPsi @ I111S

* Peephole Connections (Gers & Schmidhuber 2000)

* Also allow gates to take in ¢; information

@ ®) @Y AL

t T\ t ft =0 (Wi [Cio1,hi—1,2¢] + by)
A mﬂ‘ﬁg" A'[ A I it =0 (Wi [Ce—ryhe—1, 2] + b;)

) Ui " J O = U(WO'[Ctvht—lvxt] + bo)

4/4 @ @ Copyright @ IN1S, Tsinghua University 49
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LSTM Variants

OpenPsi @ I111S

* Peephole Connections (Gers & Schmidhuber 2000)
e Simplified LSTM
e Assumei; =1—f;

* So only two gates are needed
* Fewer parameters

& ®) ) .
T\/ T\ T =
% 1" Cy = fir xCy_ +(1—f)*0t
AR o

@ 4/4 @ @ Copyrjight @ 111S, Tsinghua University
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LSTM Variants

OpenPsi @ I111S

* Peephole Connections (Gers & Schmidhuber 2000)
e Simplified LSTM

e Gated Recurrent Unit (GRU, Cho et al, 2014)

* Typically we only use h; to produce outputs in LSTM
* GRU: Merge h; and ¢;

* Much fewer parameters

2t — O'(WZ . [ht—laxt])
ry =0 (W [he—1, ¢])

?Lt — tanh (W . [’I"t * ht—la ZEt])

ht:(l—zt)*ht_l—i—zt*ﬁt
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LSTM Applications

* Finding the “Welcome”
* Input data X; ... X}, L may vary
* Whether the voice contains “Welcome”

e Solution

* Multi-layer LSTM and max-pooling over'Y;
* Sometimes also just use hy to.compute output for simplicity

‘BN W RN R
:g R RS
@il B E T

4/4 Copyright @ 111S, Tsinghua U'EiTstity 52
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LSTM Applications

* Finding the “Welcome”
* Input data X; ... X}, L may vary
* Whether the voice contains “Welcome”

e Solution

* Multi-layer LSTM and max-pooling over'Y;
» Skip-connections for deeper LSTMS!

SEEEEEN
Fersses

4/4 copyriant 8 1115, TS University 53
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Lecture 8, Deep Learning, 2025 Spring

LSTM Applications

* Finding the “Welcome”

* Input data X; ... X}, L may vary
e Whether the voice contains “Welcome”

e Solution

* Multi-layer LSTM and max-pooling over'Y;
» Skip-connections for deeper LSTMS!

* Bidirectional LSTMs!
* Sometimes use h¢(T) & hy(T) for output

« Remember gradient clipping! T

Y(0) Y(1) Y(2) Y(T-2)  Y(T-1)

NN
3 %

X(0)  \ X(1) X(2) \ X(T2 \ X(T 1) \ X(T)

" . | coe <. B, [
x Eom g
4/4 Copyright @ I11S, Tsinghua Universi X(0) X(1) X(2) X(T-2) X(T-1) (T)

t
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ChatGPT
LSTM Applications

OpenPsi @ I111S C}

S BRI
 What about text generation?
* A generative model over texts

@ 2
L )
* p(X; 0): the probability for X
* Training data:

EEERYSF BB,
oy ==
* A collection of texts %’E?EI{)—{L . KRS,
e Eo STt E FELTTINIHMUER,
e Even conditional generation! ERE AR,
* Nextlecture BEEHTER,
iV kR R4
WIES =2 angvy =iE s Pl R (i&iR) =g HiE “
Deep learning is a pepular-area in AI,\ ® x
4/4 & o)

SERFRs T B AT RS
IREF S BAIRIR I,
Shendi xuéxi shi Al de rémén lingyl.

pik¢
38 £ 500Copyright @ 111SHFsinghua University
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Language Model

* Language Model p(X)

* A generative model over natural language X

e Autoregressive Language I\/IodeLI

P(X;0) = | | P(XelXi<is 0)

t=1
* The most popular model-assumption

* Sequential generation ‘& tractable likelihood P(W! "The)

* LSTM language model
* X;: word at position ¢t
o Yi: P(X;| Xi<¢); softmax over all words

—hg—'

* MLE Training!

4/4 * MLE over a training corpus D Copyright @ I111S, Tsinghua Univ

)

ersiEyI_he“

ey

"quick”

P(W I "...quick") P(W | "...brown")

OpenPsi @ I111S
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Language Model

* LSTM language model
i Yt — SOftmaX(ht) — P(Xt|Xl<t)
* hy, ¢, = LSTM(X;—q, ht—q,Ct—1) 1°

I
* Language generation P(X,|#)
* Draw X~P(X; 8) .
¢ Sample X1~Y1(h0,CO,#; 8) th
Co —_—
ho —
I

<start>

4/4 Copyright @ 111S, Tsinghua University 57
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Language Model

* LSTM language model
i Yt — SOftmaX(ht) — P(Xt|Xl<t)
* hy, ¢, = LSTM(X;—q, ht—q,Ct—1) 1°

* Language generation p(x11|#)
* Draw X~P(X; 0) N
» Sample X, ~Y; (hy, ¢o, #; 6) N Y
* Generate X, }Clo = o—
+ Feed X, into LSTM o= hi— /
* Compute Y, 1 T

4/4 Copyright @ 111S, Tsinghua University 58



Lecture 8, Deep Learning, 2025 Spring OpenPsi @ I111S

Language Model

* LSTM language model
¢ Yt — SOftmaX(ht) —_ P(Xt|Xl<t)
* hy,cp = LSTM(X¢—1, hy—1,C¢—1) 1° S

* Language generation p(x11|#) P(XIle)
* Draw X~P(X; 8) R
» Sample X, ~Y; (hy, ¢o, #; 6) N Y
* Generate X, G—| —
+ Feed X, into LSTM ho— [ h—
* Compute Y, 1 T

<start> To

* Sample X;~¥5(hy, c15:X1;.0)

4/4 Copyright @ 111S, Tsinghua University 59
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Language Model

* LSTM language model
i Yt — SOftmaX(ht) — P(Xt|Xl<t)
* hy, ¢, = LSTM(X;—q, ht—q,Ct—1) 1° b

* Language generation p(x11|#) P(XIle)
* Draw X~P(X; 8) R
* Sample X, ~Y; (hg, co, #; 6) t ot R
* Generate X, Gg—=> C— C—
ho — h,— h,—

* Generate X3

* LSTM forward step <5t;]rt> TTo bL

4/4 Copyright @ 111S, Tsinghua University 60
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Language Model

* LSTM language model
¢ Yt — SOftmaX(ht) —_ P(Xt|Xl<t)
* hy,cp = LSTM(X¢—1, hy—1,C¢—1) 1° X 3

* Language generation P(thl#) P(leXl)P(XZIXQ)
* Draw X~P(X; 0) RN
« Sample X;~Y; (hq, co, #; 6) Ml hal hs
* Generate X, Q>R —Rc, —

hO —p h1—> h2—>

Generate X3 T T T
* LSTM forward step <start> o be
* Sample X3~Y3(c3, hy, X250)

4/4 Copyright @ 111S, Tsinghua University
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Language Model

* LSTM language model
¢ Yt — SOftmaX(ht) — P(Xt|Xl<t)

* hy,cp = LSTM(X¢-1, he—1,Ct-1) ;O bTe OTr nTOt bTe
e Language generation P(X{|#) P(Xy|X1)P(X3|X<3) P(X4|Xos) P(Xs|XLs)

* Draw X~P(X; 0) R

* Sample X;~Y; (hg, ¢, #; 6) t ot R hy | hs |

* Generate X, }Clo : icll: ;2_’ 23—’ ;4_’ ......

e Generate X3 ° T ! | 2= | = T L T \

* Repeat <start> To be or to be
* Remark

* Ensure 1 position shift at training time!

4/4 Copyright @ 111S, Tsinghua University 62
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Language Model

* We can also generate a language with any.given prefix
* Given wy..3, we can sample P(W |w;..3;80)
* E.g.: question answering

We|  [Wol' Wi
¥

‘ 5

Is it important to study deep learning as a college student?

TL
T > ’ : %J 'Playground © & @ & < | Loadapreset.
P

—  Yes, definitely. Deep learning is one of the most important research areas in computer

Wg W3 science today. If you want to learn about artificial intelligence, machine learning, and deep

learning, then it's good to study them as a college student.

©®
4/4 Copyright @ 111S, Tsinghua University 63
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Language Model

* LSTM language model
¢ Yt —_ SOftmaX(ht) —_ P(Xt|Xl<t)
* hy,¢p = LSTM(X¢—1, he—1, Ce—1)

* MLE training and autoregressive generation
* Input projection

 “tobeornottobe..” i ﬁ i ﬁ i i i i i
* w; are discrete tokens
 LSTM requires vectorinput J

* Trivial solution:

* One-hot vector
« X, =1[0,0,..,1,%,0]
4/4 ° |55ue? cOpyriqht@|||5W‘in%huaum%t

B
B
E
B
E
E
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Language Model

* LSTM language model
¢ Yt —_ SOftmaX(ht) —_ P(Xt|Xl<t)
* hy,¢p = LSTM(X¢—1, he—1, Ce—1)

* Trivial input projection: one-hot encoding

 ChangeawordtoanID
* “Tobeornottobe..”
» [123, 444, 8,91, 123, 444, ..]
* No semantic meaning
* P(I live in Beijing) = 0.3
* P(I live in Shanghai) = ?
 What if corpus D has no “Shanghai”?

OpenPsi @ I111S

4/4 Copyright @ 1113
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Language Model

* LSTM language model

¢ Yt — SOftmaX(ht) — P(Xt|Xl<t)
* hy,cp = LSTM(X¢—1, hy—1,C¢—1)

* Goal: learn meaningful continuous representation for words

* E.g., “Beijing”
e Itis acityin China
* |tisanoun
* |Itis a capital
* Close to “Shanghai”
* Different from “deep”

* Word embeddings

4/4

OpenPsi @ I111S

Copyright @ 111§
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* A semantic vector representation for words
* Proposed in the book, “The Measurement of Meaning” 1957
* Manually propose a few features and scores
* Let’s learn word embeddings!
cfgﬁva@anY tlﬁﬁ[%%gse A N another such 300 1 5 |
| The o 200 T
S§1%?e M)(/)ur )
our 107 A
any their %
his 0- o
Eyver ygllfr her me it =
€V &h ur him us ~100 - EH’J = _—
them jﬂ] *iaéa‘m
daﬁgﬁryday cim ~200 -
y?a it
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Word Embedding

OpenPsi @ I111S

* Distributional Hypothesis

* A word’s meaning is given by the wordsthat frequently appear close-by
* “You shall know a word by the company’it keeps” (J. R. Firth 1957: 11)

* How to measure the “similarity” of two words?
* Given word vector wy and w,

 \We use cosine distance

W1T [1%/)

D(wy,ws) = cos < Wy, w, > =
’ ’ lwy||w,|

* Learning objective

* |f two words are close to-each other, their word embeddings have small
distance

« * Otherwise, the distance should.be.la5rge wersio

68
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Word Embedding

* Word2Vec (Mikolov, et al, Google, 2013, NeurlPS 2023 test-of-time)
* An efficient toolbox for learning word embeddings

* Formulation
* Given 2k context (_= T 3X) vectors €y € pqq -+ Cr1? C1Cp ... Cx
 P(w|c_j ...cy) : Predict which-ward should-appear in the position of “?”
* Independence assumption P(w|¢) = [; P(w|c;)
* P(w|c;): a softmax distribution over all'words
* There are a lot of words!!

* We can convert multi-elass-classification to binary-class classification

4/4 Copyright @ 111S, Tsinghua University 69
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Word Embedding

* Word2Vec (Mikolov, et al, Google, 2013)
* An efficient toolbox for learning word embeddings

* Simplified formulation
* Given 2k context (_= T 3X) vectors anda wordw: C_;C_g4q ... C.qWC1Cy ... Ck
 P(+|c_g ...W ...cy) : the probability of w should appear with ¢
* Independence assumption P(+|w, c) =[]; P(+|w, ¢;)
* P(+|w,c;): avalue between O and 1
 Sigmoid function over D(w, c;)

 Assume all the vectors haveunit norm
1

P . —_— . =
(tlw,c)) = oW, ¢;) = T oxp(—wTe))
P(—|w,c;) =1 —=P(+|w,¢;)
log P(+|w,c) = Z log P(+|w, c;)
i

4/4 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

70



Lecture 8, Deep Learning, 2025 Spring OpenPsi @ I111S

Word Embedding

* Word2Vec (Mikolov, et al, Google, 2013)

* An efficient toolbox for learning word embeddings

» Simplified formulation (CBOW, continuous bag-of-word model)
* Given 2k context (_= T 3X) vectors anda wordw: C_;C_g4q ... C.qWC1Cy ... Ck
 P(+|c_g ...W ...cy) : the probability of w should appear with ¢

P . —_— . =
(+|W, Cl) O'(W, Cl) 1 _I_ eXp(—WTCi)
P(=lwycp) =1 =P(+|w,c;)

log P(¥|w,c) = Z log P(+|w, ¢;)
i

* MLE Training!
* Positive (w,) pairs:all the text chunks of length 2k + 1 from training corpus D

e All set?
* ldentical vectorssmaximize the Iearning objective!

4/4 Copyright @ 111S, inghua University 71
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Word Embedding

* Word2Vec (Mikolov, et al, Google, 2013)

* An efficient toolbox for learning word embeddings

» Simplified formulation (CBOW, continuous bag-of-word model)
* Given 2k context (_= T 3X) vectors anda wordw: C_;C_g4q ... C.qWC1Cy ... Ck
 P(+|c_g ...W ...cy) : the probability of w should appear with ¢

P . —_— . =
(+|W, Cl) O'(W, Cl) 1 _I_ eXp(—WTCi)
P(=lwycp) =1 =P(+|w,c;)

log P(¥|w,c) = Z log P(+|w, ¢;)
i

* MLE Training!
* Positive (w,) pairs:all the text chunks of length 2k + 1 from training corpus D

* We need hegative pairs
» Choose a context ¢, and select random negative words w'

4/4 Copyright @ 111S, Tsinghua University 72
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Word Embedding

INPUT PROJECTION OUTPUT

w(t-2)

* Word2Vec (Mikolov, et al, Google, 2013)
P(+|W, Ci) — O-(W) Ci) —

1 w(t-1)
T+ exp(—wT'c;)

SUM

\ E— (t)
log P(+|w,c) = 210gP(+|W, c;) /'
wit+1)
* CBOW Training corpus D
* For every text chunks (c_g".., W, ..., € ).in D w(t42)
* Collect positive data pair (¢, w), addto D™
« Random choose a wordw’, add (¢, w') to D™ CROW

* MLE Training
L(W,C)= Z log P(+|w,c) + Z log P(—|w’, ¢)

(c,w)EeD+ (c,whHeD~
* Use w; as the word embedding for the i-th word

ght @ I111S Ts nqhua University 73
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Word Embedding

* Word2Vec (Mikolov, et al, Google, 2013)

4/4

e Continuous Bag-of-Words (CBOW)
* Objective log P(w|c;)
* Use contexts ¢ to predict center word w
e Alternative: use w to predict surrounding words ¢

Copyright @ 111S, Tsinghua University

w(t-2)

—
-
—
—_
n’d’
r’d
/3

w(t+1)

w(t+2)

OpenPsi @ I111S

INPUT PROJECTION OUTPUT

SUM

cCBOW
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Word Embedding

INPUT PROJECTION  OUTPUT

w(t-2)
* Word2Vec (Mikolov, et al, Google, 2013)
. w(t-1)
e Continuous Bag-of-Words (CBOW) f
* Objective log P(W|Ci). ol
* Use contexts ¢ to predict center word w \
e Skip-Gram Model \ "
i wit+
* Use asingle center word ¢ topredict Wy, .. W_1,%, Wy ... W, \\\
* Objective log P(w;|c) \\\
* Skip-Grams 1 )
* Randomly choose sample 2R positions from =k ...— 1,1, ...k
* Training Corpus.D Skip-gram

* For every.text chunks (w_j ..., C, ..., W) in D
* select a'subset of 2R words fromw C w_;, ... wy,
* Collect positive data pair (c,Ww), add to D*

474 « Random choose 2R words wradd (e, Wiytg ™

75
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Word Embedding

OpenPsi @ I111S

* Word2Vec (Mikolov, et al, Google, 2013)
e Continuous Bag-of-Words (CBOW)

* Use contexts ¢ to predict center word w

e Skip-Gram Model

* Use asingle center word c to predict w_,coow_1,%, Wy ... Wy,

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

w(t-2)

¢ Remark w(t:2)
e CBOW trains faster than'Skip-Gram )
* Skip-Gram is a harder problem

* Harder to overfit W}%

e Skip-Gram performs better
* Particularly for.rare words

4/4 Copyright @ 111S, Tsinghua University 76
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Word Embedding

* Word2Vec Visualization
* t-SNE projection in 2D
» Similar topics cluster together

0al 753 ) %
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02| wymm RS ‘ ]

i
i
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S
WE RSTE L agax Bk B /&6
e e | T
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Word Embedding

e Word2Vec Vector Arithmetic

* Emergent analogies
* king —man + woman = queen
* Beijing — China + France = Paris

A
F 3
man walked
o,
. " - - woman »
. ~ e '*. o sSwam
king . O
-~ .
i. walking
gueen / T
/ swimming
4/4 Copyright @ 111S, Tsinghua University

Male-Female Verb tense

OpenPsi @ I111S
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LSTM Applications

* Pre-processing
» Collect a large corpus and learn word embeddings (word2vec)

e Text classification
e Bi-directional LSTM and then run'Seftmax on final hidden states
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LSTM Applications

* Pre-processing
e Collect a large corpus and learn word embeddings(word2vec)

e Text classification
e Bi-directional LSTM and then run'Seftmax on final hidden states

* Text generation
* For the specific training domain, learn an autoregressive model P(X)
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LSTM Applications

OpenPsi @ I111S

* Pre-processing
e Collect a large corpus and learn word embeddings(word2vec)

e Text classification
e Bi-directional LSTM and then run'Seftmax on final hidden states

* Text generation

* For the specific training domain, learn an autoregressive model P(X)
e Text correction (ST AL 5E

* MCMC over P(X)to improve X

+ —log P(X#E~FEARLR) = 1484.5
« —log PCTHE—FE AR = 234.5
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LSTM Applications

* English v.s. XL

* Word v.s. character
* We typically use word models for English &character model for Chinese
* A huge number of words in English! (“pneumonoultramicroscopicsilicovolcanoconiosi”)
e Use <unk> for very rare words
* Dictionary is much smaller for pure Chinese-(your homework ©)
* 413 word segmentation
* Anissue in Chinese if you'want.to'use word model: Fx#7dt K&

181k stemming

* Has = have; running = run
* Apples = apple

* 18 %Ak (< 1K) tokenization
A ll-year-old boy; 12345*54321=670592745 (still critical in modern LMs)
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LSTM Applications

* English v.s. XL

* Word v.s. character
* We typically use word models for English &character model for Chinese

* A huge number of words in English! (“pneumonoultramicroscopicsilicovolcanoconiosi”)
e Use <unk> for very rare words
e Dictionary is much smaller for pure ¢ . Tekenize the data

* 4318 word segmentation
e Anissue in Chinese if you‘'want.to ueFine Tuning is fun for all!

e 15 i Encoding
18] F-1¢ stemming [34389, 13932, 278, 318, 1257, 329, 477, 0]

* Has = have; running = run Decoding
* Apples > apple Fine Tuning is fun for all!

* 18 5L HE4L) tokenization
e A 11-year—o|d boy; 12345*%54321=6; There are multiple popular tokenizers:
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e Subword tokenization e Use the tokenizer associated with your model!
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Computation Techniques

* Language Model Learning
* MLE learning: P(X:|X;<¢)
* The expensive Softmax operator
* Objective Pg(w|h) = softmax(w’h) oc,exp(w! ' h) forw € V
* histhe hidden state of LSTM language model output
* Equivalent: Pg(w|h) < ug(w, h), ug(w, h) is exponential logit for w given h
* Loss
 L(w;0) =logPy(w) =logug(w).—logZ =logug(w) — log(ZW, Ug (W’))
* Partition function Z
* Monte Carlo Estimate!
* VL(w;0) =Vlogug(w) —E,r_p, [VIogus(w')]
* How to sample?
» Note: thisis a categorical distribution over words...
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Computation Techniques

* Language Model Learning
* MLE learning: P(X:|X;<¢)
* The expensive Softmax operator
e Hierarchical Softmax

* Examiple: [ the """ dog ", and ", " the ", “cat "
* Build a binary tree: 0(V) — 0(logV) . . @ LAt [ o) = (1 Ml = Vs B
+ Fornode j, P(leftlm; h) = (k) 0y | e
W) = 1, () o3 @ Vv g ®)
« #Params = 2V i ®
—

» 2V operators to calculate all probabilities

* Remark:
* Each word has different frequency

e Optimuoltree strueture?
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Computation Techniques

* Language Model Learning
* MLE learning: P(X:|X;<¢)
* The expensive Softmax operator
e Hierarchical Softmax

* Examiple: [ the """ dog ", and ", " the ", “cat "
» Computation cost H = };,, P(W)I(W) A p(" cat " | context) = (1 - sigm(b + Vi.. h(x)))
* His also referred to as entropy R x sigm(bx + Va,. h(x))
dog x sigm(bs + Vi . hi{x})
* P(w): the frequency of word w -

I[(w): the tree depth (or information conter “tne"
* In a complete binarytree, I(w) = log, V
The optimal tree structure is Huffman tree!

We can also.utilize semantic information

E.g., A ScalableHierarchical Distributed Language Model. Mnih &
https://papeérs.nips.€e/paper/2008/file/1e056d2b0ebd5c878c550dabac5d3724-Paper.pdf
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Advanced Techniques

* Language Model Learning

* Hierarchical Softmax
* Non-sampling, tree-based probability computation

e Remark
* Use full softmax when possible for the best performance (GPU memory allowed)

* Q: what if we want the best output?
o« X = argm)?xP(X)

* Greedy solution: for each P(X;|X;<¢), select the optimal X,
 Optimal?
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Advanced Techniques

* Language Model Inference
e Goal: find X* = argm)?xP(X) = [1;: P(X¢| X;<t)

* Greedy Solution:
* Foreacht, X/ = arg max P(X:|X/2) (i-e., keep-the best partial candidate)
t

* Better Solution: Beam Search

* |dea: keep top K candidates for each't
* K is called the beamsize (in practice k = 5~10)

* At each time step t,"compute K ? expansions and keep the top K fort + 1
* For each candidate X;,, findthe top-K X, based on P(X;|X;<;)
* Rank K? candidates by their partial probability P(X;<;)

* No guarantee to findthe optimal solution
* Trade-off between accuracy (exhaustive search) and efficiency (greedy)
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Advanced Techniques

e Beam Search

4/4

« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

<START>

Calculate prob
dist of next word

Copyright @ 111S, Tsinghua University
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Advanced Techniques

e Beam Search

4/4

« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

-0.7 =log P, (he|<START>)

he

/

<START>

N\

/

-0.9 = log P\, ({<SJART>)

Take top k words
and compute scores
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Advanced Techniques

e Beam Search

4/4

« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

-1.7 =log P\ (hit| <START> he) + 0,7

he
/ struck
-2.9 = log P\ (struck | <STARF> he) ¥ ;0%
<START>
\ -1.6 = log P, (was | <START> )¢ 079
was
/ <
ot
-0.9 g

-1.8 =Nog/P \/(got |RSTART> ) + -0.9

For each of the k hypothesas, find
top k next words and calctlate scores

Copyright @ 111S, Tsinghua University
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Advanced Techniques

e Beam Search

4/4

« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

-1.7
0.7 hit
he
/ struck
-2.9
<START>
\ -1.6
was
/ <
ot
-0.9 9
-1.8

Of these k? hypetheses,
just keep k with high@&st scores

Copyright @ 111S, Tsinghua University
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Advanced Techniques

e Beam Search
« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

-2.8 = log P (a| <SFART# he hit)%-1.7

-1.7 a
0.7 pit <
he < me
/' struck -2.5 =4og B, \/(me|<SJART> he hit) +-1.7
-2.9
<START> 2.9 =Aog P\ JWhIEp<START> | was) + -1.6

\ 16 % hit
was \
/ < struck
t
_O go

9 -378 2 log P \(struck|<START> | was) +-1.6
-1.8

414 For each ofithe k hypothesespfitiele 111k, Tsinghua university %
top k next words and calculate scores
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Advanced Techniques

e Beam Search

4/4

« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

-0.7

he

/

<START>

N\

/

-0.9

-2.8
-1.7 a
hit <

me

struck St

-2.9

«2.9
1o hit
was <

struck

got 38
-1.3

just

Of these k% hypotheseg,pright

keep k with highest scores
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Advanced Techniques

e Beam Search
« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

-4.0

tart
2.8 % .
) pie
1.7 a —
-0.7 hit < I ¢
he < me 33
/ struck St with
-2.9
<START> -2.9 on
\\ 16 hit 35
was <
/ < struck
got

-0.9 -3.8
-1.8

4/4 For each of the keéay et e ssitdaduniversity %
top k next words and calculate scores
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Advanced Techniques

e Beam Search

4/4

« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

-4.0
tart
s ! .
] pie
1.7 a -4
-0.7 hit A
he me -3
/ struck 5 L ith
-2.9
<START> -2.9 on
\ 16 hit 3.5
was
/ struck
09 got 3@
-1.8

just keep k with highest scores

Of these k? &ypigtla@aeSTsinghua

University
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Advanced Techniques

e Beam Search
« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

-4.0 -4.8

tart in

2.8 : :
1.7 pie with

: a

0.7 v < 3.4 %5
he me 3.3 3.7

/ struck St with o

-2.9

<START> -2.9 on one

< struck
got

-0.9 -8
-1.8

\ 10 hit 35 4.3
was <;
[
0

CopyriaD § THE Teinifud Viiperdineses,
just keep k with highest scores
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Advanced Techniques

e Beam Search

« Example: K = 2, score =log P(X) = X;log P (X | Xi<t)

4.0 -4.8
tart in
1.7 0 Z pie > with 4.3
0.7 s P -3e4 45 pie
he S me 3.3 3.7 / tart
/ struck Y with g "
-2.9
<START> -2.9 on one 5.0
\ 16 % hit 3,5 4.3 x pie
/ i N struck tart
09 got 38 53
-1.8
474 Copyridht & 1H1S, Tsinghua University

This is the top—scoring hypothesis!

OpenPsi @ I111S
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Advanced Techniques

* Language Model Inference
e Goal: find X™* = argm)?xP(X) = [1; P(X;|Xi<t)

* Greedy Solution:
* Foreacht, X/ = arg max P(X¢|X;2p) (i.e., keep-the best partial candidate)
t

e Better Solution: Beam Search
* |dea: keep top K candidates for each't
 When to terminate (sequences-may-have varying lengths)?
* We typically include a <end>token to indicate a text sequence is ended
* L.,ax Words reached or n completed sequences obtained (<end> token produced)
* Which sequence.to choose?
* |ssue:longer sequences tend to have lower scores!
 Adjusted metric: X* = arg m)?xiztlog P(X¢|X;<t) (normalized by its length)
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Advanced Techniques

OpenPsi @ I111S

* Language Model Learning
* The expensive softmax operator

* Language Model Inference
* Beam search for the best generated sequence

* You can also include a temperature parameter in score if you want diverse texts

* Improving the word representation
* So far, we assume a static(pretrained) embedding

* Issue: the same word'in different contexts may have different meaning
* Teddy bear v.s.-l cannot bear him any more
e A nice weather v.s. I'm-under the weather today

s HER, BV HE ML
« * Word embeddings should besantextraware!
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Advanced Techniques

* Deep contextualized word representations (EMNLP2018)

* |dea: a word feature should be related-to the whole contexts
* Including both previous words and future words
* ELMo
* (Optional) Use word2vec to pretrain staticword embeddings w
* Train a (stacked) bidirectional'RNN language model gr(w, h) and g, (w, h) use wy
* Fix the RNN model gr and g,
* For a sequence for a specific task, for the t-th word
* Run gr and g;, on the sentence to get ht]c and h?

INCREASE

* Use [Wt, h{, h?] as embedding TASK PrREVIOUS SOTA OUR EL__MO + (ABSOLUTE/

BASELINE BASELINE ) -

RELATIVE)

* Rema rk: SQUAD | Liuetal. (2017) 84.4 [[ 81.1 85.8 4.7/24.9%
o ] ; - SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/58%

* Bidirectional LSTM is critical! SRL He et al. (2017) 817 || 81.4 84.6 32/ 17.2%
_ ~ Coref | Leeetal. (2017) 67.2 || 67.2 70.4 3.2/9.8%

4/4 Copyright @ 111S, Tsindgypiversitpaiarg ot al. (2017) 91.93+0.19 || 90.15 0222 +0.10 %06/21%
SST-5 | McCann et al. (2017) 537 || 51.4 547405 3.3/6.8%
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Advanced Techniques

OpenPsi @ I111S

* Language Model Learning
* The expensive softmax operator

* Language Model Inference
* Beam search for the best generated sequence

* You can also include a temperature parameter in score if you want diverse texts

* Contextualized Word Embedding
* ELMo: use contexts to compute features of a word

* More techniques‘in your.NLP course ©
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Summary

e Recurrent neural network (RNN) for sequence data
 Vanishing/exploding gradients/value

* Long Short-Term Memory networks (LSTM)
* An RNN architecture for long-term dependency

* Language Model
e Auto-regressive model over texts & LSTM applications
* Word2vec for word representation
* Hierarchical Softmax for more-efficient softmax
* Beam search for the best output
* Elmo for contextualized representation

* Next lecture: more advanced sequence modeling techniques
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