Deep Learning lecture 8 Sequence Modeling (1)

Yi Wu, IIIS

Spring 2025

Apr-7

Today's Topic

- Basic models for sequence data
 - Recurrent neural networks
 - LSTM

• Basic techniques for modeling natural language

Story So Far

- Supervised Learning (Lec. 2~3)
 - Discriminative Models
 - Network architectures and learning algorithms
- Generative Models (Lec. 4~7)
 - Energy-based models (contrastive divergence + MCMC)
 - VAE (variational inference)
 - GAN (neural loss function)
 - Flow model (bijections)
 - Diffusion model (denoising score matching)
 - Trade-offs between expressiveness, inference and training

Sequence Data

- Most existing discussions assume fixed dimensions
 - E.g.: Image classification and generation
 - Input image has fixed width and height
 - Fixed output dimension
 - Fixed amount of network layers and parameters
- What if the dimension of input varies a lot?
 - Finding the "welcome" (lecture 2)

Sequence Data

ChatGPT

Ø

- Most existing discussions assu
 - E.g.: Image classification and g
 - Input image has fixed width and
 - Fixed output dimension
 - Fixed amount of network layer
- What if the dimension of inpu
 - Finding the "welcome" (lecture
 - Generating poet

深度之梦

在数据的海洋里遨游, 算法如风,吹散迷雾。 神经元闪烁似星辰, 连接着未来的道路。

梯度回溯千重浪, 优化求解万象生。 一行代码塑乾坤,

Copyright 模式 smanth 水平提升。

Sequence Data

- Most existing discussions assume fixed dimensions
 - E.g.: Image classification and generation
 - Input image has fixed width and height
 - Fixed output dimension
 - Fixed amount of network layers and parameters
- What if the dimension of input varies a lot?
 - Finding the "welcome" (lecture 2)
 - Generating poet
 - Machine translation

Sequence Data

- Most existing discussions assume fixed dimensions
 - E.g.: Image classification and generation
 - Input image has fixed width and height

We need a generative model for any data dimension!

- Generating poet
- Machine translation

Autoregressive Model

- Goal: a tractable p(x) for x of any dimension L
 - In particular, we consider sequential data $x = [x_1, x_2, ..., x_L]$, L may change
- Autoregressive modeling

4/4

$$p(x) = \prod_{1 \le i \le L} p(x_i | x_1 \dots x_{i-1})$$

- Key idea: decompose a joint sequence into ordered conditionals
 - Use previous dimensions to "predict" the next dimension
 - Example: Gaussian auto-regressive models

$$p(x_i|x_1...x_{i-1}) \sim N(\mu_{\theta}(x_1...x_{i-1}), \sigma_{\theta}^2(x_1...x_{i-1}))$$

Autoregressive Model

- Goal: a tractable p(x) for x of any dimension L
 - In particular, we consider sequential data $x = [x_1, x_2, ..., x_L]$, L may change
- Autoregressive modeling

$$p(x) = \prod_{1 \le i \le L} p(x_i | x_1 \dots x_{i-1})$$

- Key idea: decompose a joint sequence into ordered conditionals
 - Use previous dimensions to "predict" the next dimension
 - Example: Gaussian auto-regressive models

$$p(x_i|x_1...x_{i-1}) \sim N(\mu_{\theta}(x_1...x_{i-1}), \sigma_{\theta}^2(x_1...x_{i-1}))$$

Temporal Convolution

- WaveNet (DeepMind, 2016)
 - Goal: voice synthesis
 - $p(x) = \prod_i p(x_i|x_1, \dots, x_{i-1})$
 - Idea: temporal convolution
 - Q: how many layers do you need?
 - A: Kernel size d, we need L/d layers

1 Second

Temporal Convolution

- WaveNet (DeepMind, 2016)
 - Goal: voice synthesis
 - $p(x) = \prod_i p(x_i|x_1, \dots, x_{i-1})$
 - Idea: temporal convolution
 - Dilated Convolution!
 - $O(\log L)$ layers will be sufficient

1 Second

 $p(x_i|x_{< i})$

Computation Cost

- Generation
 - Sequential: O(L)
- Likelihood:
 - fully parallel (CNN)

Temporal Convolution

- WaveNet (DeepMind, 2016)
 - $p(x) = \prod_i p(x_i|x_1, \dots, x_{i-1})$
 - Dilated Temporal Convolution
 - And more
 - Quantization
 - Residual connection
 - Conditioned generation
 - p(x|h)
 - Remark
 - First deep generative model that can generate raw signals

(also check newer ones Jukebox & Suno)

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio

Autoregressive Model for Images

- PixelCNN (DeepMind, ICML 2016)
 - Autoregressive model over images

•
$$p(x) = \prod_{i=1}^{D^2} p(x_i|x_1, ..., x_{i-1})$$

- CNN?
 - How to design the convolution filter?
 - Goal: the convolution filter only takes in previous values

Context

Autoregressive Model for Images

- PixelCNN (DeepMind, ICML 2016)
 - Autoregressive model over images

•
$$p(x) = \prod_{i=1}^{D^2} p(x_i|x_1, ..., x_{i-1})$$

- Masked Convolution
 - Each pixel only takes in previous values
- Likelihood evaluation is in perfect parallel
- Issues?
 - Receptive fields have blind spots!

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Context

Autoregressive Model for Images

- PixelCNN (DeepMind, ICML 2016)
 - Autoregressive model over images

•
$$p(x) = \prod_{i=1}^{N^2} p(x_i|x_1, ..., x_{i-1})$$

- Masked Convolution
 - Each pixel only takes in previous values
- Likelihood evaluation is in perfect parallel

- Gated PixelCNN (DeepMind, NIPS 2016)
 - Corrected receptive field (homework ©)
 - Gated convolution
 - "Gating" technique
 - Inspired by LSTM
 - More details later

Brown bear

Autoregressive Model for Images

Conditioned generation

Robin (bird)

Gated PixelCNN

Sequence Data (Recap)

- Finding or synthesizing the "Welcome" voice
 - Input data $x = [x_1 ... x_L]$, L may vary
 - Autoregressive modeling: $p(x) = \prod_i p(x_i | x_1 ... x_{i-1})$
- Improved Temporal Convolution: Dilated ConvNet (WaveNet)
 - Parameter size is fixed, but need $O(\log L)$ layers to cover the entire sequence
 - This is a network of varying/unbounded depth for arbitrarily long sequences

State-Space Model

- Finding the "Welcome"
 - Input sequence data $X_1 ... X_L$, L may vary (X_i can be a general vector)
 - Whether the voice contains "Welcome"
- Goal: a fixed-size model for arbitrarily long sequences
- State-Space Model
 - h_t : (hidden) state
 - *X*_{*t*}: input
 - Y_t : output
 - Y_t , $h_t = f(h_{t-1}, X_t; \theta)$
 - h_{-1} : initial state

Key idea: compress any prefix sequence x_t into a fixed dimension vector h_t

State-Space Model

- h_t : (hidden) state
- X_t : input; Y_t : output
- $h_t = f_1(h_{t-1}, X_t; \theta)$
- $Y_t = f_2(h_t; \theta)$
- h_{-1} : initial state

• Same neural network across all the columns!

- Simplified drawing (loops implies recurrence)
- h_t : a vector that summarizes all past inputs (also called "memory")
- h_{-1} affects the whole network (typically set to zero)
- Y_t is computed over $X_0, ..., X_t$
- X_t affect all the outputs and states after the trial terms of the states after the st

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

- Same neural network across all the columns!
 - MLP v.s. RNN
 - RNN can be viewed as repeatedly applying MLPs
 - $h_t = f_1(W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$
 - $Y_t = f_2(W^{(2)}h_t + b^{(2)})$
 - f_1 , f_2 are activations (e.g., Sigmoid, tanh, Relli, Softmax)

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

- Same neural network across all the columns!
 - MLP v.s. RNN
 - RNN can be viewed as repeatedly applying MLPs
 - $h_t = f_1(W^{(1)} \cdot X_t + W^{(11)} \cdot h_{t-1} + b^{(1)})$
 - $Y_t = f_2(W^{(2)}h_t + b^{(2)})$

Recurrent weights!

• f_1 , f_2 are activations (e.g., Sigmoid, tanh, Relli, Softmax)

- Stack K layers of RNNs!
 - Multi-layer RNN
- State-Space Model
 - $h_t^{(k)}$: (hidden) states
 - X_t : input; Y_t : output

•
$$h_t^{(1)} = f_1^{(1)} \left(h_{t-1}^{(1)}, X_t; \theta \right)$$

•
$$h_t^{(k)} = f_1^{(k)} \left(h_{t-1}^{(k)}, h_t^{(k-1)}; \theta \right)$$

- $Y_t = f_2\left(h_t^{(K)}; \theta\right)$
- $h_{-1}^{(k)}$: initial states

Recurrent Neural Network

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

How to train an RNN?

- Assume we have paired input and target sequence $\{(X_t, D_t)\}_t$
 - Remark
 - RNN can handle much more flexible data format than fully paired data
 - But let's simply keep this assumption for now

Recurrent Neural Network

- State-Space Model
 - h_t : (hidden) state
 - X_t : input; Y_t : output
 - $h_t = f_1(h_{t-1}, X_t; \theta)$
 - $Y_t = f_2(h_t; \theta)$
 - h_{-1} : initial state

- How to train an RNN?
 - Assume we have paired input and target sequence $\{(X_t, D_t)\}_t$
 - We can define the loss function $L(\theta) = \sum_t Div(Y_t, D_t)$
 - Goal: learn the best parameter θ^* via gradient descent
 - Backpropagation through time (BPTT)!
 - Forward pass from $t=0 \to L_0$ backward pass $t = L \to 0$
 - Pay attention to gradient accumulation for recurrent weights!

Extension

- In a standard RNN, Y_t only captures previous inputs
 - What if we want Y_t to handle the entire inputs?
- Bidirectional RNN
 - An RNN for forward dependencies

•
$$t = 0 ... T$$

An RNN for backward dependencies

•
$$t = T \dots 0$$

•
$$Y_t = f_2\left(h_t^f, h_t^b; \theta\right)$$

- BPTT for bidirectional RNN?
 - $\partial Div/\partial Y_t$ for all t
 - $t = T ... 0 \text{ for } h_f$
 - t = 0 ... T for h_b

Extension

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- RNN for sequence classification
 - $Y = \max_{t} Y_{t}$
 - $L(\theta) = cross_entropy(Y, Y_{desired})$

A 1-layer RNN can handle arbitrarily long sequence data

Extension

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- RNN for sequence classification
 - $Y = \max_{t} Y_{t}$
 - $L(\theta) = cross_entropy(Y, Y_{desired})$

A 1-layer RNN can handle arbitrarily long sequence data

..... in theory!

Practice Issues of RNN

- We start with a linear RNN
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = z_t$
 - All activations are identity functions
 - We will add activations back later

Practice Issues of RNN

We start with a linear RNN

•
$$z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$$

•
$$h_t = z_t$$

$$\bullet \ h_k = W_h \cdot h_{k-1} + W_{x} \cdot X_k$$

•
$$h_k = W_h \cdot h_{k-1} + W_x \cdot X_k$$

• $= W_h^2 h_{k-2} + W_h W_x \cdot X_{k-1} + W_x \cdot X_k$

$$\bullet = W_h^3 h_{k-3} + W_h^2 W_x \cdot X_{k-2} + W_h W_x \cdot X_{k-1} + W_x \cdot X_k$$

•
$$= W_h^{k+1} h_{-1} + \sum_{i=0}^k W_h^{k-i} W_{x} \cdot X_i$$

Time

Practice Issues of RNN

We start with a linear RNN

•
$$z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$$

•
$$h_t = z_t$$

$$\bullet \ h_k = W_h \cdot h_{k-1} + W_{\chi} \cdot X_k$$

•
$$h_k = W_h \cdot h_{k-1} + W_x \cdot X_k$$

• $= W_h^2 h_{k-2} + W_h W_x \cdot X_{k-1} + W_x \cdot X_k$

•
$$= W_h^3 h_{k-3} + W_h^2 W_{x} \cdot X_{k-2} + W_h W_{x} \cdot X_{k-1} + W_{x} \cdot X_{k}$$

•
$$= W_h^{k+1} h_{-1} + \sum_{i=0}^k W_h^{k-i} W_{x} \cdot X_i$$

- The coefficient of signal at position i is exponential over W_h
 - The dynamics of the system is highly depending on the maximum eigenvalue of W_h

Practice Issues of RNN

- We start with a linear RNN
 - $z_t = W_h \cdot h_{t-1} + W_{x} \cdot X_t$
 - $h_t = z_t$
- Let's expand the recursions

- The coefficient of signal at position i is exponential over W_h
 - If $|\lambda_{\max}| > 1$, the system explodes
 - If $|\lambda_{\rm max}| < 1$, the system cannot capture long-term dependencies
 - If $|\lambda_{\max}| = 1$, the second largest eigenvalue matters

Practice Issues of RNN

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{x} \cdot X_t$
 - $h_t = f(z_t)$

Time

Simulation results with activations

• A uniform start $h_{-1} = [1,1,1,1,...]/\sqrt{N}$

- We simulate $|W_h^{k+1}h_{-1}|$ with various eigenvalues in W_h
- Remark:
 - Tanh is preferred
 - ... but still saturates
- What about backward pass?

Practice Issues of RNN

RNN with non-linearity

•
$$z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$$

•
$$h_t = f(z_t)$$

BPTT for RNN

• Consider $J_k(\theta) = Div(Y_k, D_k)$

•
$$\frac{\partial J_k}{\partial h_0} = \frac{\partial J_k}{\partial h_k} \prod_t \frac{\partial h_t}{\partial h_{t-1}}$$

•
$$\propto \prod_t W_h f'(Z_t) = W_h^k \prod_t f'(Z_t)$$

Copyright @ IIIS, Tsinghua University

Practice Issues of RNN

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$
 - $h_t = f(z_t)$
- BPTT for RNN
 - Consider $J_k(\theta) = Div(Y_k, D_k)$

•
$$\frac{\partial J_k}{\partial h_0} = \frac{\partial J_k}{\partial h_k} \prod_t \frac{\partial h_t}{\partial h_{t-1}}$$

- $\propto \prod_t W_h f'(Z_t) = W_h^k \prod_t f'(Z_t)$
- Possible gradient explosion!

 $\partial h^{(3)}$

Practice Issues of RNN

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$
 - $h_t = f(z_t)$
- BPTT for RNN
 - Consider $J_k(\theta) = Div(Y_k, D_k)$

•
$$\frac{\partial J_k}{\partial h_0} = \frac{\partial J_k}{\partial h_k} \prod_t \frac{\partial h_t}{\partial h_{t-1}}$$

- $\propto \prod_t W_h f'(Z_t) = W_h^k \prod_t f'(Z_t)$
- f is activation (e.g., tanh)
 - $|f|_L \le 1$
- Gradient vanishing!
 - RNN "forgets" long-term past!

Practice Issues of RNN

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Take a smaller step when gradient is too large
 - Gradient clipping is an important trick in practice

Algorithm 1 Pseudo-code for norm clipping

$$egin{aligned} \hat{\mathbf{g}} \leftarrow rac{\partial \mathcal{E}}{\partial heta} \ \mathbf{if} & \|\hat{\mathbf{g}}\| \geq threshold \ \hat{\mathbf{g}} \leftarrow rac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \ \mathbf{end} & \mathbf{if} \end{aligned}$$

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Identity initialization
 - Make sure the weight matrix is initialized to have $\lambda_{max}=1$

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Identity initialization
 - Truncated Backprop Through Time
 - Only backpropagate for a few timesteps

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{x} \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Identity initialization
 - Truncated Backprop Through Time
 - Only backpropagate for a few timesteps
 - Gradient explosion is easy to solve

Lecture 8, Deep Learning, 2025 Spring

OpenPsi @ IIIS

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_{\chi} \cdot X_t$
 - $h_t = f(z_t)$

- Gradient Explosion & Vanishing!
 - Training instability and long-term dependency
- Tricks for explosion
 - Gradient clipping
 - Identity initialization
 - Truncated Backprop Through Time
- What about memory?
 - RNN forgets past due to activation,

Preserve Long-Term Memory

- RNN with non-linearity
 - $z_t = W_h \cdot h_{t-1} + W_x \cdot X_t$
 - $h_t = f(z_t)$

- It is difficult for RNN to preserve long-term memory
 - The hidden state h_t is constantly being written (short-term memory)
 - Let's keep a separate cell for maintaining long-term memory

Long Short-Term Memory Network

- LSTM (Hochreiter & Schmidhuber, 1997)
 - A special RNN architecture for learning long-term dependencies
 - σ : layer with sigmoid activation
 - Let's walk through the architecture
 - Diagrams from https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory Network

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Core idea: maintain separate state h_t and cell c_t (memory)
 - h_t : full update every iteration
 - c_t : only partially updated through gates

Concatenate

Operation

Transfer

Copy

• A σ layer outputs "importance" (0~1) for each entry and only modify those entries in c_t

Long Short-Term Memory Network

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Forget gate f_t
 - f_t outputs whether we want to "forget" things from c_t or carry it
 - Compute $c_{t-1} \odot f_t$ (element-wise)
 - $f_t(i) \rightarrow 0$: we want to forget $c_t(i)$
 - $f_t(i) \rightarrow 1$: we want to keep the information in $c_t(i)$

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Long Short-Term Memory Network

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Input gate i_t
 - i_t extracts useful information from X_t to update memory
 - \tilde{c}_t : information from X_t to update memory (dimension projection)
 - i_t : which dimensions in the memory should be updated by X_t
 - $i_t(j) \rightarrow 1$: we want to keep the information in $\tilde{c}_t(j)$ to update memory
 - $i_t(j) \rightarrow 0$: $\tilde{c}_t(j)$ should not contribute to memory

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Long Short-Term Memory Network

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Memory update
 - $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
 - f_t forget gate; i_t input gate
 - $f_t \odot c_{t-1}$: drop useless information in old memory
 - $i_t \odot \tilde{c}_t$: add selected new information from current input

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

OpenPsi @ IIIS

Long Short-Term Memory Network

- LSTM (Hochreiter & Schmidhuber, 1997)
 - Output gate o_t
 - Compute next hidden state $h_t = o_t \odot \tanh(c_t)$
 - $tanh(c_t)$: non-linear transformation over all past information
 - o_t : choose important dimensions for next state
 - $o_t(j) \rightarrow 1$: tanh $(c_t(j))$ is critical for next state
 - $o_t(j) \rightarrow 0$: tanh $(c_t(j))$ does not worth reporting

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Long Short-Term Memory Network

• LSTM (Hochreiter & Schmidhuber, 1997)

- $h_t = o_t \odot \tanh(c_t)$
- $c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$
- $Y_t = g(h_t)$
- Uninterrupted gradient flow!
 - No more matrix multiplication for c_t
 - In practice: ~100 timesteps of memory instead of ~7

• Remark

- LSTM does not have guarantees for gradient explosion/vanishing
- An architecture that makes learning long-term dependency easier
- LSTMs is the dominant approach for sequence modeling from 2013~2016

LSTM Variants

- Peephole Connections (Gers & Schmidhuber 2000)
 - Also allow gates to take in c_t information

$$f_{t} = \sigma \left(W_{f} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{f} \right)$$

$$i_{t} = \sigma \left(W_{i} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \cdot [\boldsymbol{C_{t}}, h_{t-1}, x_{t}] + b_{o} \right)$$

LSTM Variants

- Peephole Connections (Gers & Schmidhuber 2000)
- Simplified LSTM
 - Assume $i_t = 1 f_t$
 - So only two gates are needed
 - Fewer parameters

$$C_t = f_t * C_{t-1} + (1 - f_t) * \tilde{C}_t$$

LSTM Variants

- Peephole Connections (Gers & Schmidhuber 2000)
- Simplified LSTM
- Gated Recurrent Unit (GRU, Cho et al, 2014)
 - ullet Typically we only use h_t to produce outputs in LSTM
 - GRU: Merge h_t and c_t

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

LSTM Applications

- Finding the "Welcome"
 - Input data $X_1 \dots X_L$, L may vary
 - Whether the voice contains "Welcome"
- Solution
 - Multi-layer LSTM and max-pooling over Y_t
 - ullet Sometimes also just use h_T to compute output for simplicity

X(t)

Copyright @ IIIS, Tingua University

LSTM Applications

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- Solution
 - ullet Multi-layer LSTM and max-pooling over Y_t
 - Skip-connections for deeper LSTMS!

LSTM Applications

- Finding the "Welcome"
 - Input data $X_1 ... X_L$, L may vary
 - Whether the voice contains "Welcome"
- Solution
 - Multi-layer LSTM and max-pooling over Y_t
 - Skip-connections for deeper LSTMS!
 - Bidirectional LSTMs!
 - Sometimes use $h_f(T) \& h_b(T)$ for output
 - Remember gradient clipping!

LSTM Applications

- What about text generation?
 - A generative model over texts
 - $p(X; \theta)$: the probability for X
 - Training data:
 - A collection of texts
 - E.g.: 诗歌全集
 - Even conditional generation!
 - Next lecture

写一首热爱深度学习的诗歌

深度之梦

在数据的海洋里遨游, 算法如风,吹散迷雾。 神经元闪烁似星辰, 连接着未来的道路。

梯度回溯千重浪, 优化求解万象生

- Language Model p(X)
 - A generative model over natural language X
- Autoregressive Language Model

$$P(X;\theta) = \prod_{t=1}^{L} P(X_t | X_{i < t}; \theta)$$

- The most popular model assumption
 - Sequential generation & tractable likelihood P(W I "The")
- LSTM language model
 - X_t : word at position t
 - Y_t : $P(X_t|X_{i < t})$, softmax over all words
- MLE Training!
 - MLE over a training corpus D Copyright @ IIIS, Tsinghua University The"

Language Model

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$

4/4

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Feed X_1 into LSTM
 - Compute Y₂

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Feed X_1 into LSTM
 - Compute Y₂
 - Sample $X_2 \sim Y_2(h_1, c_1, X_1; \theta)$

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Generate X_3
 - LSTM forward step

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Generate X_3
 - LSTM forward step
 - Sample $X_3 \sim Y_3(c_2, h_2, X_2; \theta)$

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Language generation
 - Draw $X \sim P(X; \theta)$
 - Sample $X_1 \sim Y_1(h_0, c_0, \#; \theta)$
 - Generate X_2
 - Generate X_3
 - Repeat
- Remark
 - Ensure 1 position shift at training time!

- We can also generate a language with any given prefix
 - Given $w_{1\sim 3}$, we can sample $P(W|w_{1\sim 3};\theta)$
 - E.g.: question answering

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- MLE training and autoregressive generation
- Input projection
 - "to be or not to be ..."
 - w_t are discrete tokens
 - LSTM requires vector input
 - Trivial solution:
 - One-hot vector
 - $X_t = [0,0,...,1,...,0]$
 - Issue?

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Trivial input projection: one-hot encoding
 - Change a word to an ID
 - "To be or not to be ..."
 - [123, 444, 8, 91, 123, 444, ...]
 - No semantic meaning
 - P(I live in Beijing) = 0.3
 - P(I live in Shanghai) = ?
 - What if corpus D has no "Shanghai"? P

- LSTM language model
 - $Y_t = \operatorname{softmax}(h_t) = P(X_t | X_{i < t})$
 - $h_t, c_t = LSTM(X_{t-1}, h_{t-1}, c_{t-1})$
- Goal: learn meaningful continuous representation for words
 - E.g., "Beijing"
 - It is a city in China
 - It is a noun
 - It is a capital
 - Close to "Shanghai"
 - Different from "deep"
 - Word embeddings

- A semantic vector representation for words
 - Proposed in the book, "The Measurement of Meaning" 1957
 - Manually propose a few features and scores
 - Let's learn word embeddings!

- Distributional Hypothesis
 - A word's meaning is given by the words that frequently appear close-by
 - "You shall know a word by the company it keeps" (J. R. Firth 1957: 11)
- How to measure the "similarity" of two words?
 - Given word vector w_1 and w_2
 - We use cosine distance

$$D(w_1, w_2) = \cos \langle w_1, w_2 \rangle = \frac{w_1^T w_2}{|w_1| |w_2|}$$

- Learning objective
 - If two words are close to each other, their word embeddings have small distance
 - Otherwise, the distance should be large University

- An efficient toolbox for learning word embeddings
- Formulation
 - Given 2k context (上下文) vectors $c_{-k}c_{-k+1}\dots c_{-1}?c_1c_2\dots c_k$
 - $P(w|c_{-k}...c_k)$: Predict which word should appear in the position of "?"
 - Independence assumption $P(w|c) = \prod_i P(w|c_i)$
 - $P(w|c_i)$: a softmax distribution over all words
 - There are a lot of words!!
- We can convert multi-class classification to binary-class classification

- Word2Vec (Mikolov, et al, Google, 2013)
 - · An efficient toolbox for learning word embeddings
 - Simplified formulation
 - Given 2k context (上下文) vectors and a word w: $c_{-k}c_{-k+1}\ldots c_{-1}wc_1c_2\ldots c_k$
 - $P(+|c_{-k}...w...c_k)$: the probability of w should appear with c
 - Independence assumption $P(+|w,c) = \prod_i P(+|w,c_i)$
 - $P(+|w,c_i)$: a value between 0 and 1
 - Sigmoid function over $D(w, c_i)$
 - Assume all the vectors have unit norm

$$P(+|w,c_{i}) = \sigma(w,c_{i}) = \frac{1}{1 + \exp(-w^{T}c_{i})}$$

$$P(-|w,c_{i}) = 1 - P(+|w,c_{i})$$

$$\log P(+|w,c) = \sum_{i} \log P(+|w,c_{i})$$

- Word2Vec (Mikolov, et al, Google, 2013)
 - An efficient toolbox for learning word embeddings
 - Simplified formulation (CBOW, continuous bag-of-word model)
 - Given 2k context (上下文) vectors and a word w: $c_{-k}c_{-k+1}\ldots c_{-1}wc_1c_2\ldots c_k$
 - $P(+|c_{-k}...w...c_k)$: the probability of w should appear with c

$$P(+|w,c_{i}) = \sigma(w,c_{i}) = \frac{1}{1 + \exp(-w^{T}c_{i})}$$

$$P(-|w,c_{i}) = 1 - P(+|w,c_{i})$$

$$\log P(+|w,c) = \sum_{i} \log P(+|w,c_{i})$$

- MLE Training!
 - Positive (w,c) pairs: all the text chunks of length 2k+1 from training corpus D
 - All set?
 - Identical vectors maximize the learning objective!

- Word2Vec (Mikolov, et al, Google, 2013)
 - An efficient toolbox for learning word embeddings
 - Simplified formulation (CBOW, continuous bag-of-word model)
 - Given 2k context (上下文) vectors and a word w: $c_{-k}c_{-k+1}\ldots c_{-1}wc_1c_2\ldots c_k$
 - $P(+|c_{-k} \dots w \dots c_k)$: the probability of w should appear with c

$$P(+|w,c_{i}) = \sigma(w,c_{i}) = \frac{1}{1 + \exp(-w^{T}c_{i})}$$

$$P(-|w,c_{i}) = 1 - P(+|w,c_{i})$$

$$\log P(+|w,c) = \sum_{i} \log P(+|w,c_{i})$$

- MLE Training!
 - Positive (w,c) pairs: all the text chunks of length 2k+1 from training corpus D
 - We need negative pairs!
 - Choose a context c, and select random negative words w'
 - This training method is called negative sampling

Word Embedding

• Word2Vec (Mikolov, et al, Google, 2013)

$$P(+|w,c_{i}) = \sigma(w,c_{i}) = \frac{1}{1 + \exp(-w^{T}c_{i})}$$
$$\log P(+|w,c) = \sum_{i} \log P(+|w,c_{i})$$

- CBOW Training corpus *D*
 - For every text chunks $(c_{-k}, ..., w, ..., c_k)$ in D
 - Collect positive data pair (c, w), add to D^+
 - Random choose a word w', add (c, w') to D^-
- MLE Training

$$L(W,C) = \sum_{(c,w)\in D^+} \log P(+|w,c) + \sum_{(c,w')\in D^-} \log P(-|w',c)$$

- Use w_i as the word embedding for the i-th word
 - We can also use $[c_i, w_i]$, or simply ignore $c_i^{\text{Spinghua University}}$

CBOW

Word Embedding

- Word2Vec (Mikolov, et al, Google, 2013)
 - Continuous Bag-of-Words (CBOW)
 - Objective $\log P(w|c_i)$
 - Use contexts c to predict center word w
 - Alternative: use w to predict surrounding words c

CBOW

Word Embedding

- Word2Vec (Mikolov, et al, Google, 2013)
 - Continuous Bag-of-Words (CBOW)
 - Objective $\log P(w|c_i)$
 - Use contexts c to predict center word w
 - Skip-Gram Model
 - Use a single center word c to predict w_{-k} , ... w_{-1} , *, w_1 ... w_k
 - Objective $\log P(w_i|c)$
 - Skip-Grams
 - Randomly choose sample 2R positions from -k ... -1,1, ... k
 - Training Corpus D
 - For every text chunks $(w_{-k}, ..., c, ..., w_k)$ in D
 - select a subset of 2R words from $\widetilde{w} \subseteq w_{-k} \dots w_k$
 - Collect positive data pair (c, \widetilde{w}) , add to D^+
 - Random choose 2R words \widetilde{W}^{bpy} and $C_{\mathcal{C}}$, \widetilde{W}^{bh} at $C_{\mathcal{C}}$

Skip-gram

Word Embedding

- Word2Vec (Mikolov, et al, Google, 2013)
 - Continuous Bag-of-Words (CBOW)
 - Use contexts c to predict center word w
 - Skip-Gram Model
 - Use a single center word c to predict $w_{-k}, \dots w_{-1}, *, w_1 \dots w_k$
- Remark
 - CBOW trains faster than Skip-Gram
 - Skip-Gram is a harder problem
 - Harder to overfit
 - Skip-Gram performs better
 - Particularly for rare words

Word Embedding

- Word2Vec Visualization
 - t-SNE projection in 2D
 - Similar topics cluster together

Word Embedding

Word2Vec Vector Arithmetic

Emergent analogies

• king – man + woman ≈ queen

• Beijing – China + France ≈ Paris

- Pre-processing
 - Collect a large corpus and learn word embeddings (word2vec)
- Text classification
 - Bi-directional LSTM and then run Softmax on final hidden states

- Pre-processing
 - Collect a large corpus and learn word embeddings (word2vec)
- Text classification
 - Bi-directional LSTM and then run Softmax on final hidden states
- Text generation
 - For the specific training domain, learn an autoregressive model P(X)

- Pre-processing
 - Collect a large corpus and learn word embeddings (word2vec)
- Text classification
 - Bi-directional LSTM and then run Softmax on final hidden states
- Text generation
 - For the specific training domain, learn an autoregressive model P(X)
- Text correction (文本改错)
 - MCMC over P(X) to improve X
 - -log P(文学是一种医术形式) = 1484.5
 - -log P(文学是一种艺术形式) = 234.5

- English v.s. 中文
 - Word v.s. character
 - We typically use word models for English & character model for Chinese
 - A huge number of words in English! ("pneumonoultramicroscopicsilicovolcanoconiosi")
 - Use <unk> for very rare words
 - Dictionary is much smaller for pure Chinese (your homework ©)
 - 分词 word segmentation
 - An issue in Chinese if you want to use word model: 中关村北大街
 - 词干化 stemming
 - Has → have; running → run
 - Apples → apple
 - 词条化(令牌化) tokenization
 - A 11-year-old boy; 12345*54321=670592745 (still critical in modern LMs)

LSTM Applications

- English v.s. 中文
 - Word v.s. character
 - We typically use word models for English & character model for Chinese
 - A huge number of words in English! ("pneumonoultramicroscopicsilicovolcanoconiosi")
 - Use <unk> for very rare words
 - Dictionary is much smaller for pure
- Tokenize the data

- 分词 word segmentation
 - An issue in Chinese if you want to us Fine Tuning is fun for all!
- 词干化 stemming

4/4

- Has → have; running → run
- Apples → apple
- 词条化(令牌化) tokenization
 - A 11-year-old boy; 12345*54321=67. There are multiple popular tokenizers:
 - Subword tokenization

the tokenizer associated with your model!

Computation Techniques

- Language Model Learning
 - MLE learning: $P(X_t|X_{i < t})$
 - The expensive Softmax operator
 - Objective $P_{\theta}(w|h) = \operatorname{softmax}(w^T h) \propto \exp(w^T h)$ for $w \in V$
 - *h* is the hidden state of LSTM language model output
 - Equivalent: $P_{\theta}(w|h) \propto u_{\theta}(w,h)$, $u_{\theta}(w,h)$ is exponential logit for w given h
 - Loss
 - $L(w; \theta) = \log P_{\theta}(w) = \log u_{\theta}(w) \log Z = \log u_{\theta}(w) \log \left(\sum_{w'} u_{\theta}(w')\right)$
 - Partition function Z
 - Monte Carlo Estimate!
 - $\nabla L(w; \theta) = \nabla \log u_{\theta}(w) \mathbb{E}_{w' \sim P_{\theta}} [\nabla \log u_{\theta}(w')]$
 - How to sample?
 - Note: this is a categorical distribution over words...

Computation Techniques

- Language Model Learning
 - MLE learning: $P(X_t|X_{i < t})$
 - The expensive Softmax operator
 - Hierarchical Softmax
 - Build a binary tree: $O(V) \rightarrow O(\log V)$
 - For node j, $P(\operatorname{left}|n_j, h) = \sigma(n_j^T h)$
 - $P(w) = \prod_j \sigma(h^T n_j)$
 - #Params = 2V
 - 2V operators to calculate all probabilities
 - Remark:
 - Each word has different frequency
 - Optimal tree structure?

Computation Techniques

- Language Model Learning
 - MLE learning: $P(X_t|X_{i < t})$
 - The expensive Softmax operator
 - Hierarchical Softmax
 - Computation cost $H = \sum_{w} P(w)I(w)$
 - *H* is also referred to as entropy
 - P(w): the frequency of word w
 - *I(w)*: the tree depth (or information conter
 - In a complete binary tree, $I(w) = \log_2 V$
 - The optimal tree structure is Huffman tree!
 - We can also utilize semantic information
 - E.g., A Scalable Hierarchical Distributed Language Model. Mnih &
 - https://papers.nips.cc/paper/2008/file/1e056d2b0ebd5c878c550da6ac5d3724-Paper.pdf

- Language Model Learning
 - Hierarchical Softmax
 - Non-sampling, tree-based probability computation
 - Remark
 - Use full softmax when possible for the best performance (GPU memory allowed)
- Q: what if we want the best output?
 - $X = \arg \max_{X} P(X)$
 - Greedy solution: for each $P(X_t|X_{i < t})$, select the optimal X_t
 - Optimal?

- Language Model Inference
 - Goal: find $X^* = \arg \max_{X} P(X) = \prod_{t} P(X_t | X_{i \le t})$
 - Greedy Solution:
 - For each t, $X_t^{\star} = \arg\max_{X_t} P(X_t|X_{i < t}^{\star})$ (i.e., keep the best partial candidate)
 - Better Solution: Beam Search
 - Idea: keep top K candidates for each t
 - *K* is called the beam size (in practice $k = 5 \sim 10$)
 - At each time step t, compute K^2 expansions and keep the top K for t+1
 - For each candidate $\tilde{X}_{i < t}$, find the top- $K X_t$ based on $P(X_t | \tilde{X}_{i < t})$
 - Rank K^2 candidates by their partial probability $P(\tilde{X}_{i \leq t})$
 - No guarantee to find the optimal solution
 - Trade-off between accuracy (exhaustive search) and efficiency (greedy)

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

4/4

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

Advanced Techniques

• Beam Search

4/4

• Example: K = 2, score = $\log P(X) = \sum_{t} \log P(X_t | X_{i < t})$

For each of the *k* hypotheses, find top *k* next words and calculate scores

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_{t} \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_{t} \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_t \log P(X_t | X_{i < t})$

- Beam Search
 - Example: K = 2, score = $\log P(X) = \sum_{t \in A} \log P(X_t | X_{i < t})$

- Beam Search

- Language Model Inference
 - Goal: find $X^* = \arg \max_X P(X) = \prod_t P(X_t | X_{i \le t})$
 - Greedy Solution:
 - For each t, $X_t^{\star} = \arg\max_{X_t} P(X_t|X_{i < t}^{\star})$ (i.e., keep the best partial candidate)
 - Better Solution: Beam Search
 - Idea: keep top K candidates for each t
 - When to terminate (sequences may have varying lengths)?
 - We typically include a <end> token to indicate a text sequence is ended
 - L_{\max} words reached or n completed sequences obtained (<end> token produced)
 - Which sequence to choose?
 - Issue: longer sequences tend to have lower scores!
 - Adjusted metric: $X^* = \arg\max_{X} \frac{1}{L_X} \sum_{t} \log P(X_t | X_{i < t})$ (normalized by its length)

- Language Model Learning
 - The expensive softmax operator
- Language Model Inference
 - Beam search for the best generated sequence
 - You can also include a temperature parameter in score if you want diverse texts
- Improving the word representation
 - So far, we assume a static (pretrained) embedding
 - Issue: the same word in different contexts may have different meaning
 - Teddy bear v.s. I cannot bear him any more
 - A nice weather v.s. I'm under the weather today
 - 苟富贵, 毋相忘 v.s. 苟全性命于乱世
 - Word embeddings should be context aware!

Advanced Techniques

- Deep contextualized word representations (EMNLP2018)
 - Idea: a word feature should be related to the whole contexts
 - Including both previous words and future words
 - ELMo
 - (Optional) Use word2vec to pretrain static word embeddings w_s
 - Train a (stacked) bidirectional RNN language model $g_f(w,h)$ and $g_b(w,h)$ use w_s
 - Fix the RNN model g_f and g_b
 - For a sequence for a specific task, for the t-th word
 - Run g_f and g_b on the sentence to get h_t^f and h_t^b

•	Use	$[w_t,$	h_t^f	h_t^b] a	s emb	edding	
		1 ** ()	, ct)	10T 1 G	5 61118		

• Remark:

• Bidirectional LSTM is critical!

ng	TASK	Previous SOTA		OUR BASELINE	ELMo + BASELINE	(ABSOLUTE/ RELATIVE)
	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
	SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
Copyright @ IIIS, Tsi	nghuaEkkniversi	^t Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	¹⁰ 2.06 / 21%
	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Advanced Techniques

- Language Model Learning
 - The expensive softmax operator
- Language Model Inference
 - Beam search for the best generated sequence
 - You can also include a temperature parameter in score if you want diverse texts
- Contextualized Word Embedding
 - ELMo: use contexts to compute features of a word

More techniques in your NLP course ☺

Summary

- Recurrent neural network (RNN) for sequence data
 - Vanishing/exploding gradients/value
- Long Short-Term Memory networks (LSTM)
 - An RNN architecture for long-term dependency
- Language Model
 - Auto-regressive model over texts & LSTM applications
 - Word2vec for word representation
 - Hierarchical Softmax for more efficient softmax
 - Beam search for the best output
 - Elmo for contextualized representation
- Next lecture: more advanced sequence modeling techniques

Thanks!

